Datacenter in a box: test your SDN cloud-datacenter controller at home

José Teixeira‡, Gianni Antichi*, Davide Adami†, Alessio Del Chiaro†, Stefano Giordano†, Alexandre Santos‡

*Computer Lab, University of Cambridge
†Dept. of Information Engineering, University of Pisa
‡Engineering school, University of Minho

EWSDN’13
Contents

• Introduction
• Datacenter in a box: our framework
 • Overview
 • Modules
• Use Case
 • Understanding VM allocation policies dynamics
• Performance Evaluation
• Conclusions
Introduction

Cloud Datacenters

- Unlike traditional DCs
 - Services bounded to physical servers
- Cloud Datacenters
 - Consist of virtualized resources
 - VMs can migrate between physical servers resulting in:
 - increasing both scalability and reliability – Better DC resources usage

Issues

- DC Management
 - Becomes harder – Separation of
 - Isolation and connectivity of VMs
- Performance degradation

- Systems administration (i.e. servers, VMs)
- Network administration (i.e. physical switches)
- Resource fragmentation
- Rigidity Intra-DC network architecture
Introduction

Cloud service providers
• Demand a new generation of Cloud DCs
 • Efficient – high server utilization
 • Agile – Fast network response to server/VMs provisioning
 • Scalable – Consolidating and migrating VMs based on application requirements
 • Simple

Software Defined Networking
• Promising way to satisfy DC network requirements
• Decouples control plane (routing decisions) from data plane (traffic forwarding)

Openflow
• Set forwarding rules into OF-Compliant switches
• Centralized intelligence - Controller
Introduction

• SDN cloud-DC controller
 • Fulfills DC requirements
 • Both IT and network resources

• Novel architectural solutions
 • Test campaigns must be performed
 • Experimental environments

• A Novel Framework
 • Enhances Mininet & POX
 • Develop and assess novel controllers
 • Compare performance of control and management strategies
Related Work

• Cloudsim – Estimate performance;

• Cloudsim Extension - topology generator & flow-based approach (collecting delay)

• Other DC emulators
 • icancloud[12] greencloud[10] and groudsim[18]

SDN solutions

• FPGA emulation platform

• Meridian – Create and manage logical network topologies
 • M. Banikazemi et al. Meridian: An sdn latform for cloud network services. Communications Magazine, 2013
Main Purpose: provide a full package for the development and test of DC SDN Controller

Single Environment

DC topology emulator
- Starting point – Mininet
 - API to reproduce custom topologies
 - Assess OF controllers before deployment
- Lacks tools
 - Correctly emulate DC behavior

- How to easily generate and configure typical DC topologies?
- How to simulate VMs allocation requests?
- How to emulate the inter and in/out DC traffic?

DC oriented controller
- POX
 - Python OF controller
 - Ready-to-use modules
- Not high level enough API
 - Implement DC controller
 - Prevents rapid development

- Provides necessary abstraction level
 - Still dynamic

Datacenter in a box: our framework
Datacenter in a box: our framework
Datacenter in a box: our framework

Mininet Environment

- **Topology Generator**
 - Support for tree and fat-tree topologies
 - Gateways, core, aggregation, edge, servers, links

- **Traffic Generator**
 - Correctly emulate DC behavior
 - Fully customizable traffic emulation
 - D-ITG, a distributed traffic generator
 - Large spectrum of network traffic profiles (e.g., Poisson distribution, DNS, VoIP, etc.)

- **Mininet DC Configuration**
 - Fully configurable
 - DC-architecture
 - Host resources
 - Set per-VM D-ITG configuration

Note: in Emulated Environment VMs are not really allocated
Datacenter in a box: our framework

Virtual Machine Requests

- **WEB Platform**
 - Monitoring tool
 - End-user GUI for requesting VM

- **VM Requester**
 - Act as external user requiring resources (VM)
 - Communicates with SDN Cloud DC controller
 - CPU, RAM, Disk, Network & VM lifetime

- Lifetime expires
 - Traffic and rules automatically handled
Datacenter in a box: our framework

SDN Cloud DC Controller

• VM Request Handler
• OF Rules Handler
• Topology Discovery
 • Intra-DC network – multi-layer hierarchical infrastructures
 • Host_tracker and discovery
• Statistics Handler
 • Automatically collects and saves statistics
• User-defined Logic
 • Define desired controller functionalities
 • Focus only on the algorithm
Datacenter in a box: our framework

Emulation Working flow

1. VM Request
2. Statistics Request
3. Statistics Reply
 - Run User-defined logic
 • Which rules to install
 • Where to put the VM
4. Install rules
5. VM Reply
6. Generate traffic
Validation and Tests

Validation

• Best fit VS Worst fit
 • Best fit
 • Fill each server with VMs
 • Worst fit
 • Spread the VMs in all servers

DC Architecture

• 16 servers (hosts)
• Up to 3 VMs per server
• 1 request per second
• first host link saturates at the 33–th second
Validation and Tests

Performance Evaluation
Conclusions

• Novel SDN Framework (Mininet & POX)
• Addresses issues in testing SDN Cloud DC controllers
• Validated with well-known VM scheduling algorithms
• Evaluated performance (scalability and stability)

Work still in progress...

• Insert more features
 • VM Migration and storage
• Extend tests
 • More algorithms and bigger DCs
Thank you

José Teixeira‡, Gianni Antichi*, Davide Adami†,
Alessio Del Chiaro†, Stefano Giordano†,
Alexandre Santos‡

*Computer Lab, University of Cambridge
†Dept. of Information Engineering, University of Pisa
‡Engineering school, University of Minho