Traffic Engineering with Segment Routing: SDN-based Architectural Design and Open Source Implementation

Luca Davoli(1), Luca Veltri(2), Pier Luigi Ventre(3), Giuseppe Siracusano(3), Stefano Salsano(3)

(1) Univ. of Parma / Consortium GARR - (2) Univ. of Parma
(3) Univ. of Rome Tor Vergata

30/9 - 2/10 2015, Bilbao, Spain
Overview

• Traditional approaches for Traffic Engineering (TE) require per-flow routing state within all network nodes

• We propose a SDN-based network architecture where per-flow routing states are set-up only at the border of the network
 ➢ TE is implemented through Segment Routing (SE)
 ➢ SDN paradigm is used for performing TE/SR computation and to configure border nodes

• We have designed and implemented a simple SR heuristic for SR path computation

• We have carried out experimental analysis

• We provide an open-source implementation of the proposed architecture
Network Architecture

- ISP network managed by a (logically) centralized SDN controller
- Provider Edge (PE) routers and Core Routers (CR) are hybrid IP/MPLS/SDN nodes (called OSHI nodes and also used in demo)
- MPLS is used for TE
 - TE paths enforced by using Segment Routing (SR)
 - no change to the MPLS forwarding plane is required
 - no MPLS control plane has to be used
Traffic Engineering with Segment Routing

- We enhance a SDN controller with TE/SR modules
- We assume that the SDN controller is requested to allocate a set of traffic flows with a specified bit rate
 - The flow assignment algorithm is first executed in order to compute the TE paths
 - We implemented a modified version of the heuristic proposed in a previous work that tries to minimize the overall network crossing time
 - Then, for each TE path, the corresponding SR path is calculated
 - SR path is the list of segment IDs that should be added to incoming packets for instructing them through the assigned TE path
 - We propose a simple SR assignment algorithm that minimize the number of required segment IDs
Implementation and tests

- The proposed network architecture has been implemented and tested (source code is available)

- Experimental analysis with two main goals:
 - testing the SR assignment algorithm
 - 153 nodes, 354 links, 940 out of 2460 flows
 - testing the overall implementation of the solution
 - both control and data planes

![Graph showing TE paths and SR paths](image)

![Graph showing TE computation time and SR computation time](image)