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Networking in the virtualization era	
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Observations	

•  Every server has a software switch inside!

–  packet switching among VMs!

–  replacing hardware switches!
–  chaining network functions!

•  Software switch needs to be!
–  fast: network functions are I/O and CPU intensive!

–  ßexible: supporting many use cases!
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Case study	


•  Packet forwarding throughput between two 10G NICs	
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In the reality	


•  A lot of reasons we need to use OpenVswitch (OVS)!
–  Need for Linux + KVM!

•  OVS is a default software switch!

–  Widely deployed already!
•  OVS + KVM is the cheapest choice!

•  Community support and knowledge sharing!
•  Active development and matured implementation!

–  Integration with the other systems!
•  Command-line tools!
•  Advanced management tools (e.g., OpenStack)!

–   StakeholdersÕ preference	




Motivation	


Accelerating OpenVswitch while minimally 
impacting on an existing ecosystems!

–  Reusing existing control tools!
–  Minimally modifying the existing code to easily follow future 

update of OpenVswitch!



OpenVswitch ecosystem	


•   	
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Possible bottlenecks	


•  Packet processing!
–  OpenFlow-based ßow "

matching!

•  Packet switching!
–  Per-packet forwarding"

(e.g., locking destination"
port, packet scheduling)!

•  Packet I/O!
–  Per-packet metadata"

allocation etc 	
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Our design choice	


•  Packet switching and"
Packet I/O are possible"
to transparent"
acceleration!

•  Packet processing is"
a bit hard if we preserve"
existing semantics	
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mSwitch: Modular Software Switch	


•  Fast packet I/O and switching based on netmap API*!
–  Batched packet processing!

–  Amortized metadata allocation overhead!
–  EfÞcient, scalable packet switching algorithm!

•  Packet processing is ÒmodularÓ!
–  Separation of packet switching and packet processing 	


Packet I/O
Packet switching

NIC/Virtual interfaces

Modular packet processing Other features!
•  NIC, virtual interfaces and OSÕs 

TCP/IP host stack support!
•  Multi-threading!
•  etc	
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mSwitch: Modular Software Switch	


•   	
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Performance improvement with 
mSwitch	


•  Packet forwarding"
between two NICs!
–  Xeon E-1650 "

(3.8 Ghz) CPU!

–  1 CPU core!
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(a) Layer 2 learning bridge.
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Figure 12. Packet forwarding performance for different mSwitch modules and packet sizes. For the learning bridge and Open
vSwitch module we compare them to their non-mSwitch versions (FreeBSD bridge and standard Open vSwitch, respectively).

ment a filter module able to direct packets between mSwitch
ports based on the <dst IP, protocol type,dst port>

3-tuple. User-level processes (i.e., the stacks) request the use
of a certain 3-tuple, and if the request does not collide with
previous ones, the module inserts the 3-tuple entry, along
with a hash of it and the switch port number that the process
is connected to, into its routing table. On packet arrival, the
module ensures that packets are IPv4 and that their check-
sum is correct. If so, it retrieves the packet’s 3-tuple, and
matches a hash of it with the entries in the table. If there is a
match, the packet is forwarded to the corresponding switch
port, otherwise it is dropped. The module also includes addi-
tional filtering to make sure that stacks cannot spoof packets
and consists of about 200 lines of code in all, excluding
protocol-related data structures.

To be able to analyze the performance of the module
separately from that of any user-level stack that may make
use of it, we run a test that forwards packets through the
module and between two 10 Gb/s ports; this functionality
represents the same costs in mSwitch and the module that
would be incured if an actual stack were connected to a port.
Figure 12(b) shows throughput results. We see a high rate of
5.8 Gb/s (12.1 Mp/s or 81% of line rate) for 64-byte packets,
and full line rate for larger packet sizes, values that are only
slightly lower than those from the learning bridge module.

To take this one step further, we built a simple user-
level TCP stack library along with an HTTP server built
on top of it. Using these, and relying on mSwitch’s 3-tuple
module for back-end support, we were able to achieve HTTP
rates of up to 8 Gb/s for 16KB and higher fetch sizes, and
approximately 100 K requests per second for short requests.

6.3 Open vSwitch
In our final use case, we attempt to see whether it is simple
to port existing software packages to mSwitch, and whether
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Figure 13. Overview of Open vSwitch’s datapath.

doing so provides a performance boost. To this end we target
Open vSwitch, modifying code of the version in the 3.9.0
Linux kernel in order to adapt it to mSwitch; we use the term
mSwitch-OVS to refer to this mSwitch module.

At the end we modified 476 lines of code (LoC). Changes
in the original files are only 59 LoC, which means following
future update of Open vSwitch should be easy. 201 LoC is
for support for netmap-mode with “internal-dev” which is
an interface type of Open vSwitch to be connected by the
host network stack. The rest of modifications include control
functions that instructs mSwitch instance (e.g., attaching an
interface) based on control commands of Open vSwitch, a
glue code between Open vSwitch’s packet processing and
mSwitch’s lookup routine, and the lookup routine itself.

As a short background, figure 13 illustrates Open vSwitch’s
datapath. The datapath typically runs in the kernel, and in-
cludes one or more NICs or virtual interfaces as ports; it
is, at this high level, similar to mSwitch’s datapath (recall
figure 2). The datapath takes care of receiving packets on



General architecture of mSwitch	




Bare mSwitch performance	


•  ÒDummyÓ processing module !
•  NIC to NIC	
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Figure 5. Throughput between 10 Gb/s NICs and virtual ports for different packet sizes and CPU frequencies. Solid lines are
for a single NIC, dashed ones for two.

(Intel Xeon E3-1220@3.1GHz, 16GB of RAM) with a sim-
ilar card. Unless otherwise stated, we run the CPU of the
mSwitch server at 3.8 GHz. In terms of operating system,
we rely on FreeBSD 10 3 for most experiments, and Linux
3.9 for the Open vSwitch experiments in the next section.
To generate and count packets we use pkt-gen , a fast gen-
erator that uses the netmap API and so can be plugged into
mSwitch’s virtual ports. Throughout, we use Gb/s to mean
Gigabits per second, Mp/s for millions of packets per sec-
ond, and unless otherwise stated we use a batch size of 1024
packets.

5.1 Basic performance
For the first experiments, and to derive a set of baseline per-
formance figures, we implemented a dummy plug-in mod-
ule. The idea is that the source port is configured to mark
packets with a static destination port. From there, the packet
goes to the dummy module, which returns immediately (thus
giving us a base figure for how much it costs for packets to
go through the entire switch’s I/O path), and then the switch
sends the packet to the destination port.

We evaluate mSwitch’s throughput for different packet
sizes and combinations of NICs and virtual ports. We further
vary our CPU’s frequency by either using Turbo Boost to
increase it or a sysctl to decrease it; this lets us shed light
on CPU-bound bottlenecks.

To begin, we connect the two 10 Gb/s ports of the NIC to
the switch, and have it forward packets from one to the other
using a single CPU core (figure 5(a)). With this setup, we
obtain 10 Gb/s line rate for all CPU frequencies for 256-byte
packets or larger, and line rate for 128-byte ones starting at
2.6 GHz. Minimum-sized packets are more CPU-intensive,
requiring us to enable Turbo Boost to reach 96% of line rate
(6.9/7.1 Gb/s or 14.3/14.9 Mp/s). In a separate experiment

3 mSwitch can also run in Linux.

we confirmed that this small deviation from line rate was a
result of our lower-frequency, receiver server.

For the next experiment we attach the two NIC ports and
two virtual ports to the switch, and conduct NIC-to-virtual
port tests (10 Gb/s ones using one pair of NIC and virtual
port, and 20 Gb/s ones with two pairs). In addition, we as-
sign one CPU core per port pair. The results in figure 5(b)
are similar to those in the NIC-to-NIC case, with line rate
values for all packet sizes at 3.8 GHz. The graph also shows
that mSwitch scales well with the number of ports and CPU
cores: we achieve line rate for two 10 Gb/s ports for all
packet sizes. Finally, figure 5(c) presents throughput num-
bers in the opposite direction, from virtual ports to NICs,
with similar results.
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Figure 6. Forwarding performance between two virtual
ports and different number of CPU cores and rings per port.

The previous set of experiments all involved NICs. To get
an idea of mSwitch’s raw switching performance, we attach
a pair of virtual ports to the switch and forward packets



Bare mSwitch performance	


•  ÒDummyÓ processing module !
•  Virtual port to virtual port	
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(Intel Xeon E3-1220@3.1GHz, 16GB of RAM) with a sim-
ilar card. Unless otherwise stated, we run the CPU of the
mSwitch server at 3.8 GHz. In terms of operating system,
we rely on FreeBSD 10 3 for most experiments, and Linux
3.9 for the Open vSwitch experiments in the next section.
To generate and count packets we use pkt-gen , a fast gen-
erator that uses the netmap API and so can be plugged into
mSwitch’s virtual ports. Throughout, we use Gb/s to mean
Gigabits per second, Mp/s for millions of packets per sec-
ond, and unless otherwise stated we use a batch size of 1024
packets.

5.1 Basic performance
For the first experiments, and to derive a set of baseline per-
formance figures, we implemented a dummy plug-in mod-
ule. The idea is that the source port is configured to mark
packets with a static destination port. From there, the packet
goes to the dummy module, which returns immediately (thus
giving us a base figure for how much it costs for packets to
go through the entire switch’s I/O path), and then the switch
sends the packet to the destination port.

We evaluate mSwitch’s throughput for different packet
sizes and combinations of NICs and virtual ports. We further
vary our CPU’s frequency by either using Turbo Boost to
increase it or a sysctl to decrease it; this lets us shed light
on CPU-bound bottlenecks.

To begin, we connect the two 10 Gb/s ports of the NIC to
the switch, and have it forward packets from one to the other
using a single CPU core (figure 5(a)). With this setup, we
obtain 10 Gb/s line rate for all CPU frequencies for 256-byte
packets or larger, and line rate for 128-byte ones starting at
2.6 GHz. Minimum-sized packets are more CPU-intensive,
requiring us to enable Turbo Boost to reach 96% of line rate
(6.9/7.1 Gb/s or 14.3/14.9 Mp/s). In a separate experiment

3 mSwitch can also run in Linux.

we confirmed that this small deviation from line rate was a
result of our lower-frequency, receiver server.

For the next experiment we attach the two NIC ports and
two virtual ports to the switch, and conduct NIC-to-virtual
port tests (10 Gb/s ones using one pair of NIC and virtual
port, and 20 Gb/s ones with two pairs). In addition, we as-
sign one CPU core per port pair. The results in figure 5(b)
are similar to those in the NIC-to-NIC case, with line rate
values for all packet sizes at 3.8 GHz. The graph also shows
that mSwitch scales well with the number of ports and CPU
cores: we achieve line rate for two 10 Gb/s ports for all
packet sizes. Finally, figure 5(c) presents throughput num-
bers in the opposite direction, from virtual ports to NICs,
with similar results.
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The previous set of experiments all involved NICs. To get
an idea of mSwitch’s raw switching performance, we attach
a pair of virtual ports to the switch and forward packets



Bare mSwitch performance	


•   Dummy packet processing moduleÓ	

•  N virtual ports to N virtual ports!
•  Ò	
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(a) Experiment topologies.
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(b) Unicast throughput.
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(c) Broadcast throughput.

Figure 7. Switching capacity with an increasing number of virtual ports. For unicast, each src/dst port pair is assigned a single
CPU core, for broadcast each port is given a core. For setups with more than 6 ports (our system has 6 cores) we assign cores
in a round-robin fashion.

between them. We also leverage mSwitchÕs ability to assign
multiple packet rings to each port (and a CPU core to each
of the rings) to further scale performance. Figure 6 shows
throughput when assigning an increasing number of CPU
cores to each port (up to 3 per port, at which point all 6
cores in our system are in use). We see a rather high rate of
about 185.0 Gb/s for 1514-byte packets and 25.6 Gb/s (53.3
Mp/s) for minimum-sized ones. We also see a peak of 215.0
Gb/s for 64KB ÒpacketsÓ; given that we are not limited by
memory bandwidth (our 1333MHz quad channel memory
has a maximum theoretical rate of 10.6 GB/s per channel, so
roughly 339 Gb/s in total), we suspect the limitation to be
CPU frequency.

5.2 Switching Scalability
Having tested mSwitchÕs performance with NICs attached,
as well as between a pair of virtual ports, we now investigate
how its switching capacity scales with additional numbers of
virtual ports.

We begin by testing unicast trafÞc, as shown in Þgure 7(a)
(top). We use an increasing number of port pairs, each pair
consisting of a sender and a receiver. Each pair is handled by
a single thread which we pin to a separate CPU core (as long
as there are more cores than port pairs; when that is not the
case, we pin more than one pair of ports to a CPU core in a
round-robin fashion).

Figure 7(b) shows the results. We observe high switch-
ing capacity. For minimum-sized packets, mSwitch achieves
rates of 26.2 Gb/s (54.5 Mp/s) with 6 ports, a rate that de-
creases slightly down to 22.5 Gb/s when we start sharing
cores among ports (8 ports). For 1514-byte packets we see
a maximum rate of 172 Gb/s with 4 portswhy does this go
down for 6 ports?, down to 136.5 Gb/s for 8 ports.

For the second test, we perform the same experiment
but this time each sender transmits broadcast packets (Þg-
ure 7(a), bottom). An mSwitch sender is slower than a re-

ceiver because packet switching and processing happen in
the senderÕs context. This experiment is thus akin to hav-
ing more senders, meaning that the receivers should be
less idle than in the previous experiment and thus cumu-
lative throughput should be higher (assuming no other bot-
tlenecks).

This is, in fact, what we observe (Þgure 7(c)): in this
case, mSwitch yields a rate of 46 Gb/s (96 Mp/s) for 64-
byte packets when using all 6 cores, going down to 38 Gb/s
when sharing cores among 8 ports. 1514-byte packets result
in a maximum rate of 205.4 Gb/s for 6 ports and 170.5 Gb/s
for 8 ports. As expected, all of these Þgures are higher than
in the unicast case.
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Figure 8. Packet forwarding throughput from a single
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rithm (list) to VALEÕs (bitmap).

Next, we evaluate the cost of having a single source send
packets to an increasing number of destination ports, up to
5 of them, at which point all 6 cores in our system are in
use. Figure 8 shows aggregate throughput from all destina-



Learning bridge performance	


•   mSwitch-learn: pure learning bridge processing!
–  Adding a cost of MAC address hashing at packet processing	
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Figure 12. Packet forwarding performance for different mSwitch modules and packet sizes. For the learning bridge and Open
vSwitch module we compare them to their non-mSwitch versions (FreeBSD bridge and standard Open vSwitch, respectively).

ment a filter module able to direct packets between mSwitch
ports based on the <dst IP, protocol type,dst port>

3-tuple. User-level processes (i.e., the stacks) request the use
of a certain 3-tuple, and if the request does not collide with
previous ones, the module inserts the 3-tuple entry, along
with a hash of it and the switch port number that the process
is connected to, into its routing table. On packet arrival, the
module ensures that packets are IPv4 and that their check-
sum is correct. If so, it retrieves the packet’s 3-tuple, and
matches a hash of it with the entries in the table. If there is a
match, the packet is forwarded to the corresponding switch
port, otherwise it is dropped. The module also includes addi-
tional filtering to make sure that stacks cannot spoof packets
and consists of about 200 lines of code in all, excluding
protocol-related data structures.

To be able to analyze the performance of the module
separately from that of any user-level stack that may make
use of it, we run a test that forwards packets through the
module and between two 10 Gb/s ports; this functionality
represents the same costs in mSwitch and the module that
would be incured if an actual stack were connected to a port.
Figure 12(b) shows throughput results. We see a high rate of
5.8 Gb/s (12.1 Mp/s or 81% of line rate) for 64-byte packets,
and full line rate for larger packet sizes, values that are only
slightly lower than those from the learning bridge module.

To take this one step further, we built a simple user-
level TCP stack library along with an HTTP server built
on top of it. Using these, and relying on mSwitch’s 3-tuple
module for back-end support, we were able to achieve HTTP
rates of up to 8 Gb/s for 16KB and higher fetch sizes, and
approximately 100 K requests per second for short requests.

6.3 Open vSwitch
In our final use case, we attempt to see whether it is simple
to port existing software packages to mSwitch, and whether
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Figure 13. Overview of Open vSwitch’s datapath.

doing so provides a performance boost. To this end we target
Open vSwitch, modifying code of the version in the 3.9.0
Linux kernel in order to adapt it to mSwitch; we use the term
mSwitch-OVS to refer to this mSwitch module.

At the end we modified 476 lines of code (LoC). Changes
in the original files are only 59 LoC, which means following
future update of Open vSwitch should be easy. 201 LoC is
for support for netmap-mode with “internal-dev” which is
an interface type of Open vSwitch to be connected by the
host network stack. The rest of modifications include control
functions that instructs mSwitch instance (e.g., attaching an
interface) based on control commands of Open vSwitch, a
glue code between Open vSwitch’s packet processing and
mSwitch’s lookup routine, and the lookup routine itself.

As a short background, figure 13 illustrates Open vSwitch’s
datapath. The datapath typically runs in the kernel, and in-
cludes one or more NICs or virtual interfaces as ports; it
is, at this high level, similar to mSwitch’s datapath (recall
figure 2). The datapath takes care of receiving packets on
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Figure 12. Packet forwarding performance for different mSwitch modules and packet sizes. For the learning bridge and Open
vSwitch module we compare them to their non-mSwitch versions (FreeBSD bridge and standard Open vSwitch, respectively).

ment a filter module able to direct packets between mSwitch
ports based on the <dst IP, protocol type,dst port>

3-tuple. User-level processes (i.e., the stacks) request the use
of a certain 3-tuple, and if the request does not collide with
previous ones, the module inserts the 3-tuple entry, along
with a hash of it and the switch port number that the process
is connected to, into its routing table. On packet arrival, the
module ensures that packets are IPv4 and that their check-
sum is correct. If so, it retrieves the packet’s 3-tuple, and
matches a hash of it with the entries in the table. If there is a
match, the packet is forwarded to the corresponding switch
port, otherwise it is dropped. The module also includes addi-
tional filtering to make sure that stacks cannot spoof packets
and consists of about 200 lines of code in all, excluding
protocol-related data structures.

To be able to analyze the performance of the module
separately from that of any user-level stack that may make
use of it, we run a test that forwards packets through the
module and between two 10 Gb/s ports; this functionality
represents the same costs in mSwitch and the module that
would be incured if an actual stack were connected to a port.
Figure 12(b) shows throughput results. We see a high rate of
5.8 Gb/s (12.1 Mp/s or 81% of line rate) for 64-byte packets,
and full line rate for larger packet sizes, values that are only
slightly lower than those from the learning bridge module.

To take this one step further, we built a simple user-
level TCP stack library along with an HTTP server built
on top of it. Using these, and relying on mSwitch’s 3-tuple
module for back-end support, we were able to achieve HTTP
rates of up to 8 Gb/s for 16KB and higher fetch sizes, and
approximately 100 K requests per second for short requests.

6.3 Open vSwitch
In our final use case, we attempt to see whether it is simple
to port existing software packages to mSwitch, and whether
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Figure 13. Overview of Open vSwitch’s datapath.

doing so provides a performance boost. To this end we target
Open vSwitch, modifying code of the version in the 3.9.0
Linux kernel in order to adapt it to mSwitch; we use the term
mSwitch-OVS to refer to this mSwitch module.

At the end we modified 476 lines of code (LoC). Changes
in the original files are only 59 LoC, which means following
future update of Open vSwitch should be easy. 201 LoC is
for support for netmap-mode with “internal-dev” which is
an interface type of Open vSwitch to be connected by the
host network stack. The rest of modifications include control
functions that instructs mSwitch instance (e.g., attaching an
interface) based on control commands of Open vSwitch, a
glue code between Open vSwitch’s packet processing and
mSwitch’s lookup routine, and the lookup routine itself.

As a short background, figure 13 illustrates Open vSwitch’s
datapath. The datapath typically runs in the kernel, and in-
cludes one or more NICs or virtual interfaces as ports; it
is, at this high level, similar to mSwitch’s datapath (recall
figure 2). The datapath takes care of receiving packets on



Conclusion	


•  Motivation!
–  Fast software switch!
–  Need for support for widely-deployed switches!

•  Our contribution!
–  mSwitch: fast, modular software switch!

•  Accelerating OpenVswitch up to 2.6 times!
–  Small modiÞcations, preserving control interface!

–  Very fast packet forwarding at bare metal!
•  > 200 Gbps between virtual ports (with 1500 Byte packets and 3 CPU 

cores)!
•  Almost the line rate with using 1 CPU core and 2 10 Gbps NICs!
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