Integrating complex legacy systems under OpenFlow control. The DOCSIS use case

Victor Fuentes, Jon Matias, Alaitz Mendiola, Maider Huarte, Juanjo Unzilla, Eduardo Jacob
University of the Basque Country (UPV / EHU) Spain

EWSDN 2014
European Workshop on Software Defined Networks
September 2, Budapest
Outlines

Motivation
Integration of DOCSIS under OpenFlow architecture
ALHINP proxy
Design
Tests
Conclusions and future work
SDN based architectures

• SDNs are becoming omnipresent today and can be found successfully applied over several parts of the network:
 • Datacenters, campus networks,…

• Sometimes it can be difficult to integrate due to
 • Complexity
 • How to deal with technology dependent parameters
 • Provisioning
 • Dynamicity
 • Presence of legacy equipment that has to be paid off
 • Access networks technologies
Integrating legacy devices

Integrations of non-Openflow devices can be performed in several ways:

• Native integration.
 • Modify software / firmware
 • Only suitable for vendors. (code not available)
 • Programmable devices
 • Custom integration limited by the capabilities of the device

• Develop an ad-hoc module into a controller
 • Develop a per-controller module

• Proxy based integration
 • Suitable when the device to integrate cannot be modified
 • Exposing a northbound interface (OpenFlow)
 • Southbound interface (platform dependent)
DOCSIS access network

Service provider installations

Provisioning servers
- DHCP
- Time server
- TFTP

Core Network
OpenFlow controlled DOCSIS access network

- Service provider installations
- User
- OpenFlow helpers
- Customer premises
- Cable modem
- CMTS
- Aggregation OpenFlow switch
- Provisioning servers
- Proxy
- Core Network
- DOCSIS

Diagram showing the network architecture with OpenFlow control.
Hardware used

CMTS Cisco UBR-7246VXR
• 12.2 Cisco OS
• NPE G1 processing engine
• L2VPN mode (1 VLAN <-> 1 Cablemodem)

Cablemodem Cisco EPC 3825
• bridged mode
• 4 Gigabit ports

OpenFlow User Instance
• Linux MiniPC dual core / 4GB RAM
• xDPd 0.4.3
• 4 Gigabit ports

OpenFlow Aggregation switch
• Linux PC QuadCore / 6GB RAM
• xDPd 0.4.3
• Intel 4 Gigabit port PCIe card
ALHINP architecture

ALien HAL Based Integration Proxy (ALHINP)

ROFL Libraries https://www.roflibs.org

Features:
- Interface to controller: OF1.0 / OF1.2
- Internal OF version: OF1.2

repository

https://github.com/fp7-alien/alien-DOCSIS

Released under Mozilla Public license
DOCSIS Hardware Abstraction Layer

OpenFlow Controller

OpenFlow endpoint

Hardware Agnostic Part

OF messages (virtual identifiers)

Crofbase methods

• Abstracts port numbering and real DPIDs
• Hides events generated at internal ports

OF messages (real identifiers)

Translator

• Message dispatch, splitting and translation
• Packet Out performing
• Stats requests

Orchestrator

FLOW_MOD PORT_CONFIG PACKET_OUT FEATURES_REQ
FLOW_MOD PORT_CONFIG PACKET_OUT FEATURES_REQ

Packet IN PORT_STATUS FEAT. REPLY

Packet IN PORT_STATUS FEAT. REPLY

• Detects cablemodems
• Controls VLAN assignment
• Detects user-side switches and enables virtualization for each one

OF interface

DOCSIS Driver

CMTS & Provisioning servers

Enable L2VPN QoS provisioning

OF interface

OpenFlow user-side helper switches (xDPd)

Aggregation Switch (xDPd)

Packet IN PORT_STATUS FEAT. REPLY
CM detection & provisioning

QoS provisioning applied by the controller
- SET_BANDWIDTH
- Openflow match is mapped into Service Flow classifier
- The cablemodem is reconfigured with new service flows.
CM detection & provisioning

OUI detection process

Intentional PACKET_IN to establish the relationship between VLAN and DPID

OPENFLOW CONTROLLER

PORT_STATUS

ALHINP

VLAN traffic

Untagged traffic

OFP session

Cablemodem & Openflow User Instance

CMTS

Aggregation switch

Intentional PACKET_IN to establish the relationship between VLAN and DPID
VLAN support

How to handle dual VLAN tag with OpenFlow?
- Using metadata field combined with multiple tables (OF 1.2)

TABLE 0

<table>
<thead>
<tr>
<th>MATCH</th>
<th>ACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN_VID</td>
<td>present</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 0 is used only for internal flows / actions
This entry is inserted per CM

TABLE 1

<table>
<thead>
<tr>
<th>MATCH</th>
<th>ACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original match</td>
<td>Original match</td>
</tr>
<tr>
<td>METADATA</td>
<td>METADATA</td>
</tr>
<tr>
<td>VLAN_VID (user)</td>
<td>VLAN_VID (user)</td>
</tr>
</tbody>
</table>

Usage of metadata is also helpful for deleting only rules affecting to a CM in particular
Flow Mod performing

Actions always performed at egress switch

Flow mods installed in opposite direction to the flow

FLOW_MOD
 - IN_PORT: 21
 - MATCH { ...
 - TABLE 0
 - ACTION:
 - OUTPORT: 12

FLOW.MOD_part_2
 - IN_PORT: 1
 - MATCH { ...
 - TABLE 0
 - ACTION:
 - OUTPORT: netport (2)

FLOW.MOD_part_1
 - IN_PORT: netport (1)
 - MATCH { ... + METADATA}
 - TABLE 1
 - ACTION:
 - OUTPORT: 2
Packet Out performing

1. Packet_out OFPP_FLOOD
2. Packet_in
3. Packet_out OFPP_CONTROLLER
4. Packet_out 12

Controller
ALHINP

Packet_out 31
Packet_in
OFP_reason: controller

packet 21
packet 31

packet 12
Testing

OF-TEST
- Synthetic tests from Floodlight
 - False positives can be obtained

OpenFlow controllers
- POX (Tested @ TNC2014)
- Floodlight

CONET: Cache Content Network
- Integration over OFELIA network
- DOCSIS available as a resource in OFELIA
- Modified Floodlight controller for CONET
Integrate DOCSIS access network is feasible, however, it has to be surrounded with some helpers to complement the functionalities for a successful Openflow-switch-like behavior.

Integration of Openflow User interface into Cablemodem firmware should improve the performance of the solution. This would be the key of the integration we propose.

This proxy-based architecture can be easily deployed over different access technologies, developing the corresponding technology driver.
Future work

- Fine-grained AAA Service-Flow based schemes (already being investigated and developed, and partially demonstrated @FIA 2014)
 - Using different credentials for different services.
 - Moving away from MAC based authorization schemes to identity based ones.
- Advanced services
 - Support of user nomadicity, bandwidth lending...
- NFVization of elements
 - AHLINP
 - Provisioning system
 - AAA server
- Migration to other technologies
 - GPON
 - ADSL
Integrating complex legacy systems under OpenFlow control.
The DOCSIS use case

Victor Fuentes, Jon Matias, Alaitz Mendiola, Maider Huarte, Juanjo Unzilla, Eduardo Jacob

University of the Basque Country (UPV / EHU)
Spain

EWSDN 2014
European Workshop on Software Defined Networks

September 2, Budapest